Potential impacts of tropical cyclone inner-core moisture initializations on the predictability of the onset of tropical cyclone rapid intensification

Masashi Minamide (masashi.minamide@jpl.nasa.gov),

Derek J. Posselt

Jet Propulsion Laboratory, California Institute of Technology

Predictability of TC rapid intensification

Precession process: before the onset of rapid intensification

- Qualitative evidences of precession process have been reported:
 - Observational
 - Numerical modeling
- **∮** The magnitude of precession process were reported to be dominated by the chaotic nature of moist convections.

Figure courtesy of Dr. Dandan Tao

New Satellites! Himawari-8 AHI & GOES-16 ABI

- Himawari-8 (Nov. 2014)
- GOES-16 (Nov. 2016)
- Frequency: 10-15 minutes

Resolution: 2 km

Window channel (ch14) image of Hurricane Harvey (2017) monitored by GOES-16 ABI

New Satellites! Himawari-8 AHI & GOES-16 ABI

- Himawari-8 (Nov. 2014)
- GOES-16 (Nov. 2016)
- Frequency: 10-15 minutes

Resolution: 2 km

How much can these **constrained convective activity** contribute to the **prediction of rapid intensification**?

Minamide & Zhang (2017,2018); Zhang et al. (2016, 2018)

[2017-08-22_12:00]

PSU DA system of all-sky satellite radiances

Model: WRF ver.3.6.1(Skamarock 2008), CRTM (Han et al. 2006)

Advanced PSU WRF-EnKF (APSU) DA system

(Weng and Zhang, 2016; Zhang, Minamide and Clothiaux, 2016)

Ensemble-based data assimilation system: (60 members)

Regional convective-permitting model: (27, 9 & 3 km)

Error modeling

-Adaptive Observation Error Inflation (AOEI) (Minamide and Zhang, 2017, MWR)

-Adaptive Background Error Inflation (ABEI)

(Minamide and Zhang, 2019, QJRMS)

Observations (hourly)

- -All-sky GOES-16 channel 8 brightness temperatures
- -Best-track minimum SLP

PSU DA system of all-sky satellite radiances

Model: WRF ver.3.6.1(Skamarock 2008), CRTM (Han et al. 2006)

Advanced PSU WRF-EnKF (APSU) DA system

(Weng and Zhang, 2016; Zhang, Minamide and Clothiaux, 2016)

How much can **constrained convective activity** contribute to the **prediction of rapid intensification**?

- Sensitivity experiments to the strength of convections through modifying moisture initialization:
 - CNTL: PSU EnKF analysis of Hurricane Harvey (2017)
 - same vortex, but different moistures
 - Moistures within 600-km radius from TC center are reduced to modify convective activity

Experiment name	Q80	Q85	Q90	Q 95	Q100
Moisture reduction	20 %	15 %	10 %	5 %	0 % (CNTL)

Spatial distribution of positive diabatic heating

Seduced initial moistures resulted in similarly-horizontally-distributed but weaker convective activity.

Temporal evolution of TC intensity

Reduced initial moistures resulted in
the <u>delay</u> or the <u>failure</u> of simulating the onset of RI

Impacts on precession process

- More moistures
 - → stronger convections
 - → earlier completion of precession process & smaller tilt-magnitude.
- There is a boundary between vortex solutions that are capable of completing the precession process vs. those that cannot.

Impacts on precession process

Concluding Remarks

Summary:

- It is indicated that the onset of Rapid Intensification (RI) of TCs are sensitive to moisture initializations.
 - More moisture → more convection → more latent heating → more resilient vortex to adverse environmental wind shear → easier completion of precession.
- Analytical solution on the directions of precession process with idealized vortex will be demonstrated (poster session).

Poster Session 1/9 (Wed) 4:00-6:00PM (Hall 4) #1090 Minamide and Posselt

Tropical Cyclones and Extreme Monsoon Precipitation session

Future plan:

- Sensitivity of precession on the variations of convective activity
 - where and how strong convections are required
 - which TCs are easy/difficult to predict?

Thank you for your attention. (Masashi.Minamide@jpl.nasa.gov)